User Tools

Site Tools


software:ipv6

Tools for IPV6

Linux

  ping6 -i eth0 ff02::1
  ping6 -B -I eth0 -I [global IPv6 address attached to eth0] ff02::1
  ip -o -f inet6 addr
  ip -f inet6 neighbor
  ip -6 neighbor show
  

Mac

  iMac:~ andrew$ ndp -a

Windows

  ping -S [global IPv6 address] -6 ff02::2
  netsh interface ipv6 show neighbors
  netsh interface ipv6 show interface "Local Area Connection* 1"
  netsh interface ipv6 show interface
  netsh interface ipv6 delete neighbors

From: http://billspeers.com/?q=node/259

  nmap -6 --script=broadcast-dhcp6-discover
  netsh int ipv6 show prefixpolicies
  netsh interface ipv6 show address
  netsh interface ipv6 show interface
  netsh interface ipv6 show neighbors
  netsh interface ipv6 delete neighbors
  netsh interface ipv6 show destinationcache
  netsh interface ipv6 delete destinationcache
  netsh interface ipv6 show route
  netsh interface ipv6 show joins
  netsh interface ipv6 show ipstats
  netsh interface ipv6 show global
  Netsh dns show state
  route print
  tracert
  Pathping
  ping
  ipconfig /displaydns

Powershell

  Get-Netneighbor -InterfaceIndex 4 -AddressFamily IPv6

nmap

  nmap -PN -sT 2001:1::2/64 -p 3389
  nmap -6 --script=targets-ipv6-multicast-echo.nse --script-args 'newtargets' -sL -d1 -oA c:\temp\nmap.txt
  nmap -6 --script=targets-ipv6-multicast-echo.nse --script-args 'newtargets,interface=eth2' -sL 
  nmap -sU -p 10001 --script=ubiquiti-discovery.nse 10.2.2.0/24 
2020-12-08
File targets-ipv6-multicast-invalid-dst
Script types: prerule
Categories: discovery, broadcast
Download: https://svn.nmap.org/nmap/scripts/targets-ipv6-multicast-invalid-dst.nse
User Summary
Sends an ICMPv6 packet with an invalid extension header to the all-nodes link-local multicast address (ff02::1) to discover (some) available hosts on the LAN. This works because some hosts will respond to this probe with an ICMPv6 Parameter Problem packet.

From <https://nmap.org/nsedoc/scripts/targets-ipv6-multicast-invalid-dst.html>

File targets-ipv6-multicast-echo
Script types: prerule
Categories: discovery, broadcast
Download: https://svn.nmap.org/nmap/scripts/targets-ipv6-multicast-echo.nse
User Summary
Sends an ICMPv6 echo request packet to the all-nodes link-local multicast address (ff02::1) to discover responsive hosts on a LAN without needing to individually ping each IPv6 address.

From <https://nmap.org/nsedoc/scripts/targets-ipv6-multicast-echo.html>

    /dSploit/jni/nmap/scripts/targets-ipv6-multicast-echo.nse
    https://github.com/simpleverso/dsploit

From <http://138.201.16.208/file/86135700/>

• nmap
•  scripts
•  targets-ipv6-multicast-echo.nse
Find fileBlameHistoryPermalink

Imported Upstream version 7.00

From <https://gitlab.com/kalilinux/packages/nmap/blob/6faefa8a2d0b469a1345a67e6376cc4d06e3279e/scripts/targets-ipv6-multicast-echo.nse>

  Linux 
  Simply use the native ping and ip commands.
  ping -6 -I <INTERFACE> ff02::1
  ping -6 -I <INTERFACE> ff02::2
  ip neigh

From <https://pwn.no0.be/recon/network/neighbor_discovery/>

Linux and Mac

  v6disc.sh

2020-08-01
Synopsis

A shell script to quickly & automatically discover IPv6 hosts, with the option to ping or run nmap against discovered hosts. Motivation
There are three reasons to use v6disc.sh

1. Scan an IPv6 network 700,000 times faster than nmap
2. Auto Discovery of IPv6 hosts on the network (e.g. for IPAM)
3. Quickly figure out what IPv6 is already on your network.

With 18,446,744,073,709,551,616 (2^64) potential addresses on a LAN segment, the old brute force method of scanning every address (e.g. with nnap) quickly becomes impractical. Even with version 7 of nmap, scanning a /64 still takes a week! v6disc.sh scans a /64 less than 5 seconds.

From <https://github.com/cvmiller/v6disc>

  ./v6disc.sh -h
      ./v6disc.sh - auto discover IPv6 hosts 
      e.g. ./v6disc.sh -D -p
      -p  Ping discovered hosts
      -i  use this interface
      -L  show link-local only
      -D  Dual Stack, show IPv4 addresses
      -N  Scan with nmap -6 -sT
      -q  quiet, just print discovered hosts

From <https://github.com/cvmiller/v6disc>

Scamper measurement of connection information

From: http://www.caida.org/tools/measurement/scamper/

IPv6 and IPv4 active traceroute probing and ping

Scamper is designed to actively probe destinations in the Internet in parallel (at a specified packets-per-second rate) so that bulk data can be collected in a timely fashion. Scamper's native output file format is called warts: a warts file contains substantial meta data surrounding each individual measurement conducted, as well as substantial detail of responses received. The measurements conducted can range from simple to complex. An example of a simple measurement is where a single measurement method (e.g. traceroute) is used on a list of IP addresses to conduct a bulk measurement. A more complex measurement might be where the outcome of a previous test influences what happens next: for example, for each hop in a traceroute path, infer the address of the outgoing interface for the previous hop. Complex measurements are conducted by connecting to a running scamper process with a driver program which contains the logic.

Network Troubleshooting Tools, IPv4 and IPv6

Windows: Vista, 7, Server 2008 and higher

Ping for IPv4		ping -4
Ping for IPv6		ping -6
Traceroute for IPv4	tracert -4
Traceroute for IPv6	tracert -6
Interface Info		ipconfig /all
IPv4 Route table	netsh interface ipv4 show route
IPv6 Route table	netsh interface ipv6 show route
IPv4 arp table		arp -a
IPv6 ndp table		netsh interface ipv6 show neighbors

IPv6 Neighbor Discovery Mechanisms

From: http://www.sixscape.com/joomla/sixscape/index.php/technical-backgrounders/tcp-ip/ip-the-internet-protocol/ipv6-internet-protocol-version-6/ipv6-neighbor-discovery/ipv6-neighbor-discovery-mechanisms

There are nine Neighbor Discovery mechanisms that are implemented using the various Neighbor Discovery messages. These mechanisms are at the heart of IPv6.

The Neighbor Discovery mechanisms are:

Router Discovery
Prefix Discovery
Parameter Discovery
Stateless Address Autoconfiguration (SLAAC)
Address Resolution (mapping IPv6 addresses to Link Layer addresses)
Next Hop Determination
Neighbor Unreachability Detection (NUD)
Duplicate Address Detection (DAD)
Redirect

Well-known IPv6 multicast addresses

From: http://en.wikipedia.org/wiki/Multicast_address

Address		Description
ff02::1		All nodes on the local network segment
ff02::2		All routers on the local network segment
ff02::5		OSPFv3 All SPF routers
ff02::6		OSPFv3 All DR routers
ff02::8		IS-IS for IPv6 routers
ff02::9		RIP routers
ff02::a		EIGRP routers
ff02::d		PIM routers
ff02::16	MLDv2 reports (defined in RFC 3810)
ff02::1:2	All DHCP servers and relay agents on the local network segment (defined in RFC 3315)
ff02::1:3	All LLMNR hosts on the local network segment (defined in RFC 4795)
ff05::1:3	All DHCP servers on the local network site (defined in RFC 3315)
ff0x::c		Simple Service Discovery Protocol
ff0x::fb	Multicast DNS
ff0x::101	Network Time Protocol
ff0x::108	Network Information Service
ff0x::181	Precision Time Protocol (PTP) version 2 messages (Sync, Announce, etc.) except peer delay measurement
ff02::6b	Precision Time Protocol (PTP) version 2 peer delay measurement messages
ff0x::114	Used for experiments

Address		Description
ff02:0000:0000:0000:0000:0000:0000:0001		All nodes on the local network segment
ff02:0000:0000:0000:0000:0000:0000:0002		All routers on the local network segment
ff02::5		OSPFv3 All SPF routers
ff02::6		OSPFv3 All DR routers
ff02::8		IS-IS for IPv6 routers
ff02::9		RIP routers
ff02::a		EIGRP routers
ff02::d		PIM routers
ff02::16	MLDv2 reports (defined in RFC 3810)
ff02:0000:0000:0000:0000:0000:0001:0002	All DHCP servers and relay agents on the local network segment 
                                        (defined in RFC 3315)
ff02:0000:0000:0000:0000:0000:0001:0003	All LLMNR hosts on the local network segment (defined in RFC 4795)
ff05:0000:0000:0000:0000:0000:0001:0003	All DHCP servers on the local network site (defined in RFC 3315)
ff0x::c		Simple Service Discovery Protocol
ff0x::fb	Multicast DNS
ff0x::101	Network Time Protocol
ff0x::108	Network Information Service
ff0x::181	Precision Time Protocol (PTP) version 2 messages (Sync, Announce, etc.) except peer delay measurement
ff02::6b	Precision Time Protocol (PTP) version 2 peer delay measurement messages
ff0x::114	Used for experiments

ipv6 testing windows command line

From: http://billspeers.com/?q=node/259

nmap -6 --script=broadcast-dhcp6-discover
netsh int ipv6 show prefixpolicies
netsh interface ipv6 show address
netsh interface ipv6 show interface
netsh interface ipv6 show neighbors
netsh interface ipv6 delete neighbors
netsh interface ipv6 show destinationcache
netsh interface ipv6 delete destinationcache
netsh interface ipv6 show route
netsh interface ipv6 show joins
route print
tracert
Pathping
Ping
ipconfig /displaydns
netsh interface ipv6 show ipstats
netsh interface ipv6 show global

Netsh dns show state

Name Resolution Policy Table Options
Query Failure Behavior : Always fall back to LLMNR and NetBIOS if the name does not exist in DNS 
                         or if the DNS servers are unreachable when on a private network
Query Resolution Behavior : Resolve only IPv6 addresses for names
Network Location Behavior : Never use Direct Access settings
Machine Location : Outside corporate network
Direct Access Settings : Configured and

From: https://technet.microsoft.com/en-us/library/ee624049(v=ws.10).aspx

nslookup for ipv6

use the –q=aaaa command-line parameter to request only IPv6 addresses in the response. The 
syntax is nslookup –q=aaaa IntranetFQDN IntranetDNSServerIPv6Address (example: nslookup –q=aaaa dc1.corp.contoso.com 2002:836b:2:1::5efe:10.0.0.1).

nslookup isp.test-ipv6.com
nslookup  Domain.com 2001:4860:4860::8888
nslookup  -q=aaaa Domain.com 2001:4860:4860::8888


   nmap -6 --script=targets-ipv6-multicast-echo.nse --script-args 'newtargets' -sL -d1 -oA c:\\temp\\nmap.txt

pfsense ipv6 with comcast

pfsense ipv6 with comcast

From: http://undergroundmod.com/2016/08/25/pfsense-ipv6-with-comcast/

From: https://r.wundrd.net/article/pfsense-ipv6-comcast/

go to Status: Interfaces page.
Under your WAN interface section, you should see an IPv6 address (in addition to link local), 
a subnet mask ipv6 of 64, and a gateway ipv6.
Note the ISP DNS Servers section should contain ipv6 addresses. Record one of those for later testing.
Under the LAN interface section, you should see an IPv6 address (in addition to link local), and a 
subnet mask ipv6 of 64

netconf

From: http://www.v6edu.com/index.php/products/99-netconf

Also: http://www.v6edu.com/images/apps/NetConf32.msi

NetConf is a native (non-Web) application for Windows Vista and Windows Server 2008 or later that 
provides a GUI alternative to the netsh command line interface. It provide much more control and 
information than the Microsoft supplied GUI network management tools, especially for IPv6. NetConf 
will run and install on Windows XP and Windows Server 2003 but some of the advanced functions will 
not work due to missing IPv6 functionality on those platforms. For example, on those platforms you 
cannot disable Router Discovery, so SLAAC will always happen. You can disable Prefix Information 
being sent in Router Advertisements on some IPv6 routers or firewalls to stop SLAAC from happening, 
but that will affect all nodes in the subnet.

NetConf Dual Stack Network Configuration

From: http://www.sixscape.com/joomla/sixscape/index.php/products

NetConf is a native (non-Web) application for Windows Vista and Windows Server 2008 or later that 
provides a GUI alternative to the netsh command line interface. It provide much more control and 
information than the Microsoft supplied GUI network management tools, especially for IPv6. NetConf 
will run and install on Windows XP and Windows Server 2003 but some of the advanced functions will 
not work due to missing IPv6 functionality on those platforms. For example, on those platforms you 
cannot disable Router Discovery, so SLAAC will always happen. You can disable Prefix Information 
being sent in Router Advertisements on some IPv6 routers or firewalls to stop SLAAC from happening, 
but that will affect all nodes in the subnet.

Link Local Multicast Name Resolution

From: http://www.windowsnetworking.com/articles-tutorials/windows-server-2008/Overview-Link-Local-Multicast-Name-Resolution.html

Now that DNS name resolution has failed, the computer will send a multicast name query out using the 
UDP protocol. All of the other devices on the network will receive the query. Assuming that these computers
are running Windows Vista or Longhorn Server (meaning that they are link local multicast name resolution 
enabled), they will compare the query to their own host name. Assuming that the requested host is not
prohibited from responding to link local multicast name resolution queries, the computer will send a 
unicast message to the computer that sent the query. This message will contain the host’s IP address.

IPv6 Stateless Address Autoconfiguration (SLAAC)

From: https://www.youtube.com/watch?v=zbkBa8Zl568

From: https://tools.ietf.org/html/rfc4862 Good info

Addresses are generated by Host

The stateless mechanism allows a host to
   generate its own addresses using a combination of locally available
   information and information advertised by routers.  Routers advertise
   prefixes that identify the subnet(s) associated with a link, while
   hosts generate an "interface identifier" that uniquely identifies an
   interface on a subnet.  An address is formed by combining the two.
   In the absence of routers, a host can only generate link-local
   addresses.  However, link-local addresses are sufficient for allowing
   communication among nodes attached to the same link.

DAD Duplicate Address Discovery

From: https://www.youtube.com/watch?v=O1JMdjnn0ao

notice to exclude solicited Node Multicast address FF02::1:FFxx:xxxx from filter sent to

ff02::16 MLDv2 reports

multicast IPv6 match last 32 bits of layer 2 address 33:33:00:00:00:16

IPv6 Addressing (TechRef)

From: https://technet.microsoft.com/en-us/library/dd392266(v=ws.10).aspx

good overview 

IPv6 Addressing Structure

Link-local address

From: http://en.wikipedia.org/wiki/Unique_local_address

In the Internet Protocol Version 6 (IPv6), the address block 
FE80::/10 = 1111:1110:1000 has been reserved for link-local unicast addressing

From:https://technet.microsoft.com/en-us/magazine/2007.08.cableguy.aspx

IPv6 Autoconfiguration Behavior for Windows Vista
Computers running Windows Vista® or Windows Server® 2008 by default generate random interface IDs for 
non-temporary autoconfigured IPv6 addresses, including public and link-local addresses, rather than 
EUI-64-based interface IDs. A public IPv6 address is a global address that is registered in DNS and 
is typically used by server applications for incoming connections, such as a Web server.
Generation from MAC address EUI-48

From: http://packetlife.net/blog/2008/aug/4/eui-64-ipv6/

48 bits + 16 as follows
Organizationally Unique Identifier (OUI) and FFFE and  the NIC specific part.

Unique Local Address (ULA)

From: http://en.wikipedia.org/wiki/Unique_local_address

In October 2005, RFC 4193 was published, reserving the address block 
fc00::/7 for use in private IPv6 networks and defining the associated term 
unique local addresses.

DEPRECIATED: fec0::/10 for site-local addresses

Solicited Node Multicast Group and Neighborhood Discovery

Network Discovery - Multicast - DAD (Duplicate Address Detection)

From: https://www.youtube.com/watch?v=O1JMdjnn0ao

Arc form IPV4 becomes Neighborhood Discovery in IPV6
Computer and devices are found through
Neighborhood Solicitation (NS - 135)
and Neighborhood Advertizement ( NA - 136)
Network connections automatically join the Solicited Node Multicast Group based on last 24 bits xx:xxxx 
FF02::1:FFxx:xxxx = FF02:0000:0000:0000:0000:0001:FFxx:xxxx
Network connections automatically join the Global Solicited Node Multicast Group 
FF02::1           = FF02:0000:0000:0000:0000:0000:0000:0001

FE80:: Link Local
2xxx:: Global Unicast
3xxx:: Global Unicast
FFxx:: Multicast

IPv6 Tools Private ipv6 Address Range

Private ipv6 address range

From: https://www.sixxs.net/tools/grh/ula/

IPv6 ULA (Unique Local Address) RFC4193 registration
This page allows you to generate and then 'register' your IPv6 ULA (Unique Local Address) 
RFC4193 prefix. Note that this does not concern ULA-Central, though this system could easily 
handle that too. When you have registered your ULA prefix here, it allows others to check up 
if they accidentally generated the same prefix, before using it. This should absolutely minimize 
the number of collisions for ULA space. We hope that everybody using ULA prefixes register their 
prefixes here, to avoid these collisions.

https://www.ultratools.com/ipv6Tools

The UltraTools IPv6 provide calculators,IP address converters and real-time lookups to assist you with your day-to-day system administration tasks.

http://www.simpledns.com/private-ipv6.aspx

Here is a unique private IPv6 address range generated just for you (refresh page to get another one):
In IPv6 there is a special "Unique Unicast" IP range of fc00::/7 which should be used for this as per 
RFC4193.
The official definition looks like this:
 
| 7 bits |1|  40 bits   |  16 bits  |          64 bits           |
+--------+-+------------+-----------+----------------------------+
| Prefix |L| Global ID  | Subnet ID |        Interface ID        |
+--------+-+------------+-----------+----------------------------+
In practice such address will always start with "fd" because the 8th (L) bit must be one.

software/ipv6.txt · Last modified: 2020/12/08 19:05 by superwizard